Early diagnosis of Alzheimer’s disease is key goal for OHSU researchers

Alzheimer’s disease is the most common form of dementia and is the sixth leading cause of death in the United States.

Symptoms include memory loss, personality changes and trouble thinking, and the disease typically worsens over time.

Julie Saugstad, Ph.D. and Joseph Quinn, M.D.
Julie Saugstad, Ph.D. and Joseph Quinn, M.D.

Current treatments cannot stop the disease from progressing, but they can slow the development of symptoms temporarily.

Clinical diagnosis is determined by noting the degree of a patient’s mental decline, which is not obvious until there is severe and permanent brain damage.

There are no biomarkers that can be used to predict the onset or distinguish early Alzheimer’s from age-related memory loss.

Extracellular RNA (exRNA) communication is a recently discovered cell-to-cell signaling process that holds enormous promise for improving our understanding of a wide variety of diseases.

In 2013, the NIH Common Fund provided support for 30 research projects designed to explore and enhance scientists’ understanding of exRNA communication in normal and disease states.

18 of these grants were administered by the NCATS including our UH2/UH3 grant to study the clinical utility of microRNAs (small RNAs that do not code for protein) in cerebrospinal fluid as biomarkers of Alzheimer’s.

The Oregon Alzheimer’s Disease Center (OADC), the core program of the OHSU Layton Aging & Alzheimer’s Disease Center, holds CSF samples donated from AD patients and control subjects.

In the UH2 discovery phase, our studies using samples from the OADC revealed approximately 30 microRNAs that are different between Alzheimer’s disease and control cerebrospinal fluid.

In the newly funded UH3 phase, we will validate expression of these microRNAs in a new and larger set of cerebrospinal fluid samples.

Our long-term goals are to detect changes in microRNAs earlier in the disease process, which would allow patients to start treatments sooner and possibly slow or prevent brain function decline and damage, and to potentially gain new information regarding the underlying cause of Alzheimer’s disease.

UH2/UH3 Team:
Julie Saugstad, Ph.D. – Anesthesiology & Perioperative Medicine
Joseph Quinn, M.D. – Neurology
Theresa Lusardi, Ph.D. – Legacy Research Institute
Jodi Lapidus, Ph.D. – Biostatistics
Christina Harrington, Ph.D. – Integrated Genomics Laboratory